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We cons ider  heat  t r ans fe r  in the displacement  of a hot interst i t ial  liquid from an ar t i f ic ial ly 
cracked region formed by a camouflet  explosion. 

The problem of heat t r ans fe r  in a medium consist ing of solid and liquid phases a r i ses  in many tech- 
nical applications; in investigating the operation of a regenerat ive heat exchanger  [1, 2], in investigating 
the hea t - t r ans fe r  p rocess  in forced fi l tering through an underground wate r - sa tura ted  s t ra tum [3], etc. 
However, this problem is par t icu lar ly  important  in the extract ion of inter ior  heat of "dry" rocks by c i r -  
culation sys t ems  [4]. 

The basic hea t - t r ans f e r  e lement  of a circulat ion sys tem is the region formed by an underground 
camouflet  explosion: a region of crushing and intense splitting. Cracks  formed as  a resul t  of tensile, nor-  
mal ,  and tangential s t r e s s e s  at  the instant of the explosion break  down the rock mass i f  into blocks whose 
shapes depend on the distance from the center  of the explosion. In the region immediately adjoining the 
cavity formed the cleavage approaches  cubic, while at dis tances of 3-5 cavity radii the mass i f  is split into 
slabs. The openings of ar t i f icial  c racks  va ry  from 5 to 0.1 mm for  average  slab lengths of 2 to 5 m, re-  
spectively [5]. 

We descr ibe  the energy t rans format ions  in such an inhomogeneous medium by using the concept of a 
porous medium [6], stipulating the conditions for  averaging the basic thermodynamic charac te r i s t i c s .  We 
assume that the scale of averaging for  the thermodynamic  cha rac t e r i s t i c s  L >> r 0, where r 0 is some s ta t i s -  
t ical ly averaged dimension of a block. The skeleton of the medium formed has a finite specific heat and r 0 
> ix, where /x  is the average half-width of one fi l tering channel. 

We consider  the hea t - t r ans fe r  p rocess  in the displacement  of a hot interst i t ial  liquid from art if icial ly 
cracked rock,  using the model shown in Fig.  1. We assume that the heat flux f rom the solid phase is de- 
scr ibed in the energy Eq. (1) by a nonstat ionary heat source qv whose strength is determined by the tem-  
pera ture  of the fil tering liquid, i.e., 
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Fig. 1. Calculational model of a heterogeneous 
medium. 

In the far  zone the skeleton of the cracked rock 
can be thought of as consist ing of fiat slabs of half- 
width r 0 having a relative a rea  of a m2/m 3. The co r -  
responding heat-conduction equation for a slab is 

O~'tp Otp - O. (2) 

Or ~ O~ 

We assume that the tempera ture  of the solid phase 
(slab) at its surface is equal to the local tempera ture  
of the liquid; i.e., 

tp Ir=I = t l [ ,~.  (3) 
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Fig. 2. Average tempera ture  of liquid in a 
cracked medium. Dashed curve Eq. (16'); 
dash-dot  curve Eq. (15) with k = 0.020; solid 
curve Eq. (15) with k = 0.089. 

This assumption is valid for a f rac tured mass i f  
with narrow c racks  (1-= 0.1 mm)suff ic ient ly  close to- 
gether  [7]. In this ease the time to equalize the tem- 
perature  of a slab and the fil tering liquid is shor te r  than 
the time to equalize the tempera ture  over the volume 
of the slab itself [7, 8]. 

The system of equations can be written in the fol-  
lowing dimensionless  form:  

a0 80 a20 - - a - -  +Po(O), O < Y < I ,  (4) 
8 Fo OX 8Y ~ 

a #  820 
- -  - - ,  l < Y < o o ,  (5) 

O Fo 1 OY ~ 

OT a"-T 

8 Fo OR" 
, 0 < R < I ,  (6) 

where 0, d, and T are the t empera tures  of the liquid, the 
surrounding massif ,  and the slab, respect ively .  On the 

boundary between a slab and the mass i f  we specify the coupling conditions 

ao ::: L 8 ~  i (7) 
8Y  ~'=I aY  Jy=~' 

0Ivy:, .... OIr=,, (8) 

where k = XpAy ~ Xs/ky. 
It is known that for an a rb i t r a ry  change of tempera ture  of the surface of a slab 0(Fo) the tempera ture  

of the slab T(Fo) =TI.  0 (Fo),whereT~(Fo) is the solution of Eq. (6) for  unique conditions on the surface of 
the slab. After finding this solution by using the L a p l a c e - C a r s o n  t r ans fo rm Tt(s) {Fo :-* s} we determine 
the heat flux through the inner surface  of the skeleton - the Pomerantsev  member  Po: 

Gsr~ OT1 O - = i = - - G ] / ' s t h l  s 0(s, p). (9) 
~6 (6) = - -  ~ G l m oR 

Equations (4) and (5), t ransformed by the two-dimensional  L a p l a c e - C a r s o n  t ransform with the pa ramete r s  
Fo ~ s, Fo 1 ~ q, and X .~ p for  the initial conditions 6(Fo = 0, X) = 0, 0(Fo, X = 0) = 1, have the form 

d26 d ~  q~ O. (10), (11) 
a ~ -:- (s-!- p) ~ + p - -  Po (0) = 0, dy. ~ = 

Problem (9), (10), (11) with boundary conditions (7), (8) can be written in the form of a functional F(O): 

1 

F (0)---- f [a (0~)~ + (s -;- p + G V s  th l. s ) 02 - -  2riO] dY + g 1,P[I O~'lv=,. (12) 

This relat ion is established after  finding the variat ion of the functional with respect  to ~ the integrand 
in this case will sat isfy Euler ' s  equation. 

It is known [81 that the variat ional  method can be used to find both approximate and exact solutions of 
the problem. In our case the method of undetermined coefficients can be used to find an exact  solution for  
the tempera ture  of the liquid O(Fo, X) averaged over  the c ross  section. According to the Ritz method 

OF _ 0; g (s, p) = P (13) 
og p + s + G K s  t h / s  + g V'q- 

The intermediate inverse t r ans fo rm 0*(s, X) is found from the Bateman tables [9]: 

O* (s, X) = exp [ - -  sX 2roGgH GX V~s ] exp [ _  GX ,~s th , / - s  ]. (14) 

Using the inverse t ransform of the function exp (-b4s th 4"s) found in [11] and the convolution theorem for 
t r ans fo rms ,  we obtain after differentiating under the integral sign 
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~ U o (6X, u.Fo*) ~ ( F o * ,  ax) = - ~ -  

0 
(1 - -  u) l " i - - u  

_ _  d u ,  (z5) 

whe re 

= k. GX/v~F-~;; 

1 2 i Uo(GX, u.Fo*) 2 +  --r~ exp[--GX.f~(x)]sin% (x) 
o 

x shx - -  sinx 
h (x) = - -  

2 ch x + cos x 

x2Fo * x s h x + s i n x  % (x) = u GX 
2 2 chx~-cosx 

dx 

x 

(16) 

The notation Fo*, GX, and k represen t  dimensionless  quantities in the hea t - t r ans fe r  p rocess .  For  
negative values of Fo* the function vanishes;  i.e., the temperature  of the liquid at coordinate X is equal to 
the initial t empera tu re  of the rock mass i f  t i .  The dimensionless  combination of formulas  (15) contains the 
thermophysica l  cha rac t e r i s t i c s  of both phases in accordance  With the physical  meaning of the hea t -ex -  
change p rocess .  

F o r  a s lab wi th  t h e r m a l l y  insu la ted  l a t e r a l  s u r f a c e s  the t e m p e r a t u r e  as  a funct ion of X is  g ive  n by E q. (16) 
with the p a r a m e t e r  u s e t  equal  to unity.  Thi s  f o l l o w s  at once  f r o m  the funct ional  (12) in which  the l a s t  t e r m  
descr ib ing  the external effect must  be set equal to zero and then 

0-(s, p) = p (p ~ s § G )."s- th )fs)-~---~Uo (GX, Fo*). (16 ') 

The resu l t s  of a calculation on an M-222 computer  using Eqs.  (15) and (16') a re  shown in Fig. 2. As 
the thickness of the slab increases  the pa rame te r  k dec reases ,  the tempera ture  graph of Eq. (15) approaches  
the graph of (16'), andthus the inflow of heat f rom the surrounding mass i f  is decreased .  A calculational 
analysis  showed that for k < 0.01 the graphs  do not differ by more than 10%, and, consequently, in cer tain 
cases  the t empera tu re  can be adequately approximated by Eq. (16'). 

The graphs  of Eq. (16') show that the general  hea t - t r ans fe r  laws such as the constant veloci ty of the 
midpoint of a heat wave are satisfied for f i l trat ion through a porous medium [10]. The combination GX 
c h a r a c t e r i z e s  the inertia of a cracked medium; a medium with a small  value of GX responds to a d is tur -  
bance more  quickly than one having a large value of GX. In the la t ter  case the rate of decrease  of tem- 
pera ture  with respec t  to X increases ,  while f rom a cer ta in  value of Fo*, ~ v a r i e s  a lmost  l inearly with GX. 

Within the f ramework  of the mathemat ical  model assumed it is possible to calculate heat t ransfer  in 
a heterogeneous medium and to es t imate  the pa ramete r s  of a nonstat ionary underground heat boiler. 
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N O T A T I O N  

porosi ty fraction; 
time; 
effective thermal  conductivity of slab along y axis; 
height of slab; 
initial t empera tu re  of solid phase; 

is the tempera ture  at entrance to slab; 
a r e the  thermal  diffusivities of the liquid and solid phases,  respectively;  
is the volumetr ic  heat capaci ty of i-th phase; 
i s the  relative area  of c racks ,  m2/m3; 
is the height of slab; 

w x is the rate of f i l trat ion of liquid along x axis. 

D i m e n s i o n l e s s  P a r a m e t e r s  

i in 0 = (tl - tp)/( t  0. - t~). is the t empera tu re  of the liquid phase; 

T = (t s - t ; ) / ( ~ 0  n -  t~) is the tempera ture  of the solid phase; 
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R = r/r0; 
Y = y/0.5 H; 

F o -  as /r0 ; 
Fo 1 = as~-/0.25 H2; 
X = asX/Wxr~; 
Fo* = Fo - X; 
g =  a - k ;  
a = ~yr20/(G/m �9 0.25 H2); 

K = gHX/[2r 0 (Fo*) 1/2]; 
G = GsKr0(1 - m)/(G/m); 
0~r = d0/dy; 

Fo 
TI ,0  = f TI (e )0(Fo-  e)de is the convolution of the functions T! 

0 

and 0; 

Indices 

l 

T 

pertains to the liquid phase; 

pertains to the solid phase. 
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