NONSTATIONARY HEAT TRANSFER IN
A HETEROGENEOUS MEDIUM
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We consider heat transfer in the displacement of a hot interstitial liquid from an artificially
cracked region formed by a camouflet explosion,

The problem of heat transfer in a medium consisting of solid and liquid phases arises in many tech-
nical applications; in investigating the operation of a regenerative heat exchanger [1, 2], in investigating
the heat-transfer process in forced filtering through an underground water-saturated stratum [3], ete.
However, this problem is particularly important in the extraction of interior heat of "dry" rocks by cir-
culation systems [4].

The basic heat-transfer element of a circulation system is the region formed by an underground
camouflet explosion: a region of crushing and intense splitting. Cracks formed as a result of tensile, nor-
mal, and tangential stresses at the instant of the explosion break down the rock massif into blocks whose
shapes depend on the distance from the center of the explosion. In the region immediately adjoining the
cavity formed the cleavage approaches cubic, while at distances of 3-5 cavity radii the massif is split into
slabs. The openings of artificial eracks vary from 5 to 0.1 mm for average slab lengths of 2 to 5 m, re-
spectively [5].

We describe the energy transformations in such an inhomogeneous medium by using the concept of a
porous medium [6], stipulating the conditions for averaging the basic thermodynamic characteristics. We
assume that the scale of averaging for the thermodynamic characteristics L » r;, where r; is some statis-
tically averaged dimension of a block. The skeleton of the medium formed has a finite specific heat and r
> A, where A is the average half-width of one filtering channel.

We consider the heat-transfer process in the displacement of a hot interstitial liquid from artificially
cracked rock, using the model shown in Fig. 1. We assume that the heat flux from the solid phase is de-
scribed in the energy Eq. (1) by a nonstationary heat source qy whose strength is determined by the tem-
perature of the filtering liquid, i.e.,
ot o *;

-k mGl w, —Lax =}, ’5!;2»- +{l—mgq, @)

mG .

Infinite massif In the far zone the skeleton of the cracked rock

g 3 : 3 can be thought of as consisting of flat slabs of half-

A
L4

¥, -3
s 77 Z 7 /// /, - width r, having a relative area of ¢ m*/m®. The cor-
E % %%%%%%%% ;//i regponding heat-conduction equation for a slab is
= = it ot R
= //kan Ll . / R ?” - —é;‘* = 0, ( )
- A
3 H H LINS We assume that the temperature of the solid phase
d ' (slab) at its surface is equal to the local temperature

of the liquid; i.e.,
Fig. 1. Calculational model of a heterogeneous
medium.

tp ]r=1 - tl [r:l- (3)

G. V. Plekhanov Leningrad Mining Institute. Translated from Inzhenerno-Fizichegkii Zhurnal, Vol.
29, No. 3, pp. 522-526, September, 1975. Original article submitted November 19, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

1184
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gether [7]. In this case the time fo equalize the tem-
perature of a slab and the filtering liquid is shorter than
the time to equalize the temperature over the volume

of the slab itself [7, 8].

“|
|
alj |
\\\‘ \ The system of equations can be written in the fol-
1

sz
]
"—'ﬁ:"‘
S

‘,kwﬂ
|

2 . - °
’03 \\ \ ;\ 3 \ lowing dimengionless form:
' W | \\\
4 < 2
\\\ K \', \\\\ '\-“\ % = % =a s L Po(d), O<V<l, {4
N N —t N dFo aX ay*
NN RS TS
0 s = ‘ ‘ 99 &9
56 8w K 20 N W & 4o F* TR T Tyt <V < o0, (5)
Fig. 2. Average temperature of liquid in a 9ro
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curve Eq. (15) with k =0.089.
where 6, 4, and T are the temperatures of the liquid, the

surrounding massif, and the glab, respectively. On the
boundary between a slab and the massif we specify the coupling conditions
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where A = Ap/}\y & )\S/)\y.

It is known that for an arbitrary change of temperature of the surface of a slab 6(Fo) the temperature
of the slab T(Fo) =T, 6 (Fo), where T, (Fo) is the solution of Eq. (6) for unique conditions on the surface of
the slab. After finding this solution by using the Laplace—Carson transform T (s) {Fo —> s} we determine
the heat flux through the inner surface of the skeleton — the Pomerantsev member Po:
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Equations (4) and (5), transformed by the two-dimensional Laplace—Carson transform with the parameters
Fo + s, Fo, ¥ q, and X < p for the initial conditions &(Fo = 0, X) = 0, 8(Fo, X = 0) = 1, have the form
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Problem (9), (10), (11) with boundary conditions (7), (8) can be written in the form of a functional F(E):
1
FO=(1a@P+(+-p+GVs thy's )8 —2p8ldY + g1'q &y (12)
b
This relation is established after finding the variation of the functional with respect to §; the integrand

in this case will satisfy Euler's equation,

It is known [8] that the variational method can be used to find both approximate and exact solutions of
the problem. In our case the method of undetermined coefficients can be used to find an exact solution for

~

the temperature of the liquid §(Fo, X) averaged over the cross section. According to the Ritz method

doF = P
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The intermediate inverse transform 5“(5, X) is found from the Bateman tables [9]:
pad gH S s rs
0% (s, X) = —sX — GXyv's lexpl—GXqy's thy's ]
( ) = exp { .G } ] pi ¥ (14)

Using the inverse transform of the function exp (—bvs th Vs) found in [11] and the convolution theorem for
transforms, we obtain after differentiating under the integral sign
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The notation Fo*, GX, and k represent dimensionless quantities in the heat-transfer process. For
negative values of Fo* the function vanighes; i.e., the temperature of the liquid at coordinate X is equal to
the initial temperature of the rock massif ti, The dimensionless combination of formulas (15) containg the
thermophysical characteristics of both phases in accordance with the physical meaning of the heat-ex-
change process. '

For a slabwiththermally insulated lateral surfaces the temperature as a function of Xisgiven by Eq. (16)
with the parameter u set equal to unity. This follows at once from the functional (12) in which the last term
describing the external effect must be set equal to zero and then

0(s, H=p(p+s-+Gy's thy's ) 1=-U,(GX, Fo*). (16")

The results of a calculation on an M-222 computer using Eqs. (15) and (16') are shown in Fig. 2. As
the thickness of the slab increases the parameter k decreases, the temperature graph of Eq. (15) approaches
the graph of (16'), andthus the inflow of heat from the surrounding massif is decreased. A calculational
analysis showed that for k < 0,01 the graphs do not differ by more than 10%, and, consequently, in certain
cases the temperature can be adequately approximated by Eq. (161).

The graphs of Eq. (16') show that the general heat-transfer laws such as the constant velocity of the
midpoint of a heat wave are satisfied for filtration through a porous medium [10]. The combination GX
characterizes the inertia of a cracked medium; a medium with a small value of GX responds to a distur-
bance more quickly than one having a large value of GX. In the latter case the rate of decrease of tem-
perature with respect to X increases, while from a certain value of Fo*, § varies almost linearly with GX.

Within the framework of the mathematical model assumed it is possible to calculate heat transfer in
a heterogeneous medium and to estimate the parameters of a nonstationary underground heat boiler,

NOTATION
m is the porosity fraction;
T is the time;
Ay is the effective thermal conductivity of slab along y axis;
H isthe height of slab;
t%) is the initial temperature of solid phase;
tg“ is the temperature at entrance to slab;
aj, ag arethe thermal diffusivities of the liquid and solid phases, respectively;
G is the volumetric heat capacity of i-th phase;
g isthe relative area of cracks, m%/m?;
21y is the height of slab;
Wy is the rate of filtration of liquid along x axis.

Dimensionless Parameters

6 = (t] — té,) /(’c(i)_n - tli)) is the temperature of the liquid phase;
T = (tg — tll))/(t%,n - tf)) is the temperature of the solid phase;
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R = r/ry;

Y = y/0.5 B;

Fo = asT/r%;

Fo, = ag7/0,25 H%
X = agx/wxr;

Fo* = Fo = X;

g = @G- }\,;

a =Agrf/(Gm- 0.25 H%);
X = As/Ay;

K= gHX/[ZrO(Fo*)l/z];
G = Gsory(l — m)/(Grm);
oY = d6/dy;

Fo
Ti49= [ Ty(e)8(Fo— €)de is the convolution of the functions T1 and 0,

9

Indices
l pertains to the liquid phase;
T pertains to the solid phase.
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